
TYPE Iterator
ABSTRACT
Base class for coroutines used as iterators (sometimes also called generators).
The intended way of using an Iterator (it) is that its Run routine sets it's extended internal state into a
succession of configurations (representing the designed iterations), and after each configuration is set it calls
it.Yield which transfers control back to its client.
The client may then use each configuration as desired, then will typically call it.Next again.
After the final configuration is reached (assuming that there are only a finite number available) the Run
routine returns.

Note that Coroutines.Transfer is never called explicitly in either the client code, or the implementation of
it.Run.

A typical design pattern for using an iterator is:

VAR
it: Iterator;

BEGIN
NEW(it);
... Set it's extended internal state to its initial configuration ...

LOOP
it.Next
IF it.state = Coroutines.returned THEN EXIT END;
ASSERT(it.state = Coroutines.suspended, 30)
... performed required processing with each configuration of it's internal state ...

END;
END Iterate;

PROCEDURE (this: Iterator) Next
NEW
...

Post
current.source = this 80
this.state # trapped 81
this.state = suspended The next configuration is available
this.state = returned No further configurations are available


